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Abstract: Traditionally, computer graphics has favored the parametric over the implicit
surface because the parametric is easier to render. lmplicit representations, however, have

natural advantages in surface design, particularly in their ability to express concisely

constraints that a surface must obey; this paper discusses this advantage, emphasizing the use

of distance as a constraint. Unfortunately, the implicit representation of surfaces does pose

problems for certain computer graphics applications, particularly rendering and texturing. This
paper introduces a number of new techniques to overcome these difficulties.

This paper originally appeared as Xerox PARC Technical Report PB9-00106.

CR Categories and Subject Descriptors: 1.3.5 [Computer Graphicsl: Computational Geometry and

Object Modeling - cuile, surface, solid, and object representations;

Additional Keywords and Phrases: Implicit Surface, Parametric Surface. Octree.

Introduction

Two methods of surface representation are common to computer graphics. The frrst, the parametnc,

defines a surface as a set of three-dimensional points p, such that:

p = (x(u, v),y(u,v).2(u,v)).

The second, the implicit, defines a surface as a set of three-dimensional points p. such that:

f(P) : o'

A primary distinction between these two methods is the ease with which p rs generated. With the

parametric representation an arbitrary number of points can be generated directly by sweeping u and v

through their domains. This direct generation of points facilitates conventional image rendering of the

surface. Implicit surfaces do not enjoy such direct generation and. consequently, computer graphicists

have given less attention to the implicit form [Foley, 1982].
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An early exception is Ricci, who, in 1973, introduced a constructive geomehy for the purpose of
defrning complex shapes derived from operations (such as union. intersection, and blend) upon
primitives [Ricci, 1973]; he defined the surface as the boundary' berween the half-spaces (p) ( I and

f(p) > I, in other words, those points p satisfying f(p) - 1 = 0.

The constructive solid geometry that evolved has emphasized the set operations. The nature of the

primitives received relatively little attention until recent discussions by Sederberg on the drrect

modeling of solids using implicit functions [Sederberg" 1985, Sederberg, 1987]. Sederberg restricts his

primitives to algebraic polynomials: Ricci limited his examples to piecewise quadrics. Others restricted

their definitions to exponentials [Barr, 1981. Blinn, 1982]. Sophisticated operations. such as blending.

have generally been restricted to quadratics [Middleditch, 1985" Hoffman, 1985].

Another distinction between the two surface representations. noted by Ricci, is the ease of surface

defrnition. Surfaces that must obey a constraint, specified in terms of distance. are easier to define

implicitly. For example. compare these two representations for a sphere, centered at c. with radius r:

parametnc:

implicit:

p = c*(6indCosg, 6indSin9, rCosd), d e (0. n), q € Q,2n).
(p) = lp - cl- r.

Parametric surfaces remain more convenient for certain geometric computations; for example,

cuilature is more readily computed from the parametric representation.

Although simple constraints may be expressed analytically, Ricci observed that the def,rning function
need not be analytic, but could be procedural. That is, a designer is free to specify any procedure that,

given a point in space, computes a value. We refer to such design as procedural implicit modeling. ln
the next section we examine some of its advantages and some of the techniques involved in its use.

Implicit modeling permits a designer certain freedoms in constraining a surface. but it presents

problems for the computer graphicist. We will review techniques for the conversion of implicit
surlaces to the more conventional polygonal model. We will also offer new solutions to problems

associated with shaded rendering, line drawing, and texture parameterization.

Distance Constrained Implicit Models

Designing with implicitly' dehned surfaces offers various advantages; many geometric operations, for

example, are simplihed. These include the standard set operations (union, intersection, etc.) of
constructive solid geometry (CSG), functional composition with other implicit functions, and

inside/outside tests.
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The advantage with whrch we are primarily concerned is that of surface constraint. When an implicit
surface is constrained according to distance, it can define several classes ofsurfaces more convenientlv

than its parametric counterpart. In this section we discuss some of these surfaces.

Skeletal Surfaces

The simplest surface constraint is in terms of distance of the surface to a set of poins, curves, or other

surfaces. We call this set a skeleton. The simpiest skeleton. of course. is a single point c; if the distance

constraint is a fixed radius r, the resulting surface is a sphere:

(p) = lp.cl- r.

Figure l: An implicitly defined sphere

Il instead of a center c, we use a segment IE, *e obtain a cylinder:

(p) : lp - Closest(ab, p)-r.

Figure 2: An implicitly defined cylinder

Closest(ab, p) is the distance to the closest point on the line sgement. and is computed by:

t
I a a(0
I

Closest= 1 a+ad 0(c(l
I

I b d)l

where d = b-a
u=p_a
a : d.u/(d.d).
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The hemispherical ends are a consequence of the impiicit function. Should we wish a truncated, right
cylinder, Closest need only retum any point greater than r distance lrom p, when o € [0, 1].

To extend this to include the generaiized cylinder [Agin. 1972], we define Closest to return the distance

from p to an arbitrary space curve, S. Here, we restrict S to the familiar cubic parametric spline,

defined by the vecton a. b. c. d. A point q on the curve is at3+bt2+cl+d. where I is the spline
parameter. 1€ [0, f]. We find the closest point to p by solving }lp-ql/0t: 0. After some algebra.

Olp - ql/ O r : 3a.af + 5a.b/ + 2(2a.c + b.b)r3 + 3(a.e + b.c)r2 + (2b.e + c.c)l+ c.e,

where e : d - q. Multiple roots must each be tested for the closest point. As shown in Figure 3, r may

be a function of l.

This new method for computing generalized cylinders is simpler aigorithmically than parameffic

methods [Shani, 1984]. An alternate method accelerates the distance computation by representing S as

a series of points [Wyvill, 1986]; to obtain a smooth surface, the number of points must be sufficient

with respect to curve length, curvature, and cylinder radius. As discussed below, an analytic,

parametdc representation for S is desirable for a number of applications, inciuding surface texture and

the construction of complex skeletons.

Figure 3: An implicitly defined generalized cylinder

Offset Surfaces

A surface constrained to be a fixed distance normal to another surface is an offset surface [Faux, 1979].

We consider here surfaces offset from polygons: these are defined conveniently as an implicit function

of distance to the polygons:

f(p) : Min (Closest (p, polygon)

where C/osesl is either the distance from p to the plane of polygon;, if p projects to the inside of the

polygon, or the distance to the nearest edge or vertex of polygon,, (The inside test is performed most

conveniently in two-dimensions after dropping one of the coordinates from p and the polygon,

provided the polygon is not perpendicuiar to the resulting plane).



ll-5

A charactenstic of offset surfaces is the rounded, or chamfered, results along convex edges or comers. as

demonstrated in Figures 2-4. Thus we observe natural tendency for distance-constrained implicit
surfaces to smooth.

Figure 4: Offset surface of a triangle (adaptively sampled)

Metamorphosis

An implicit function can be an interpolation of two other functions. ln the figure below, we interpolate

the sphere and torus functions, evaiuating them at various interpolation parameters between 0 and 1.

Figure 5: Metamorphosis of a sphere to a torus
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Blended Surfaces

A blended surface, unlike an interpolation or metamorphosis, retains the individuality of tts component
primitives except where they intersect. We discuss blends to illustrate the convenience and flexibility
of implicit functions and to demonstrate that blending can be based on skeletons. This section

discusses some distance constraints useful in creatins blends.

The implicit definition of the branching generalized cylinder is niceiy concise. Consider a generalized

cylin der, P are nt, that branche s inlo C h i ld r e n'.

(p) = Max(f po,rndp.). 2f c n 1aur(p)),

where f parent and f g1r114r* are modified functions for the generalized cylinder:

f GeneratizedCytinder : r/(lp - Closest(p, S)l - /).

As lp-Closestl increases, f decreases smoothly; this accounts for the smooth blending of the children,

shown in Figure 6. That is, the blending of branches is accomplished by superposition of their

functions. In order to maintain surface continuity, the radius of Parent is scaled such that fparent:
2fchitd,r, atthe branch point. The simplicity of this definition contrasts with parametric methods, in
which a pentagonal parametric patch must be integrated into the model [Charrot, 1984]. A large

number of branches can greatly complicate the topology of the parametric patch network: the implicit
method. however. readily supports an arbitrary number of branches.

Figure 6: A branching generalized cylinder
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A Complex Example

A consequence of the implicit definition for a branching cylinder. above, is that the radius of the parent

is greater than any individual child radius. For a biend of two branches that maintains the original
parent and child radii. we develop a method using an envelope curve. An envelope curve is a curve that

is tangential to each member of a family of curves [Faux, i979]. A well known example is derived from
lines connecting evenly spaced points along two axes; the envelope curve for such a family of lines is a

hyperbola, as shown in Figure 7. left.

To utilize the enveiope curve. we construct a line segment between the closest points of the branches

and compute the distance d between the segment and p (Fig. 7. middie). With several positions of p, an

envelope curve becomes apparent (Fig. 7, right). The actual value of the implicit function is (d- r)/ r.

Figure 7: Distance measurements

Figure 8: A branching generalized cylinder with constant radii
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This method is considerably more complex than the original one given for branching generalized

cylinders. This underscores an important characteristic of implicit modeling: the designer is free to

specify an implicit function without regard for any subsequent conversion processes, such as

polygonization or imaging. A properly implemented implicit surface polygonizer is unaffected by the

inner workings of the implicit function. The function may be any arbitrary process; in addition to

conventional mathematical functions. the designer may employ conditionals, tables, and so on.

I mp I ic i t S u rfoc e s D e r iv e d fr o m P a ra m et r i c S u rfac e s

Let us consider the use of a complex parametric surface to define an implicit surface. We choose the

shape of a flower petal. desiring a webbed surface to curve between two supporting veins. We can

conveniently represent the veins by generalized cylinders. With some simple vector operations, we can

loft cubic splines between the two veins. These are Bezier curves, defined by the points po, aa, bb. and

p1 (see Figure 9). p0 and pt are along the two veins and aa and bb divide the segment ab into thirds. a

= p0*vandb: pl+v.wherev: vgXvl. Aloftedcurve,Loft(l),isdehnedintermsofaparameter/,
where /:0atthebaseof avein,and / = latthetip.

Figure 9: Method of lofting curves to create a parametric skeleton

To frnd the closest distance to the lofted surface from a point in space we seek the I for which the

distance to Lof(l) is a minimum. It isn't possible to represent this minimum in a low order analytic

form. Rather, we divide the computations into two steps: computing Loft and then computing the

ciosest distance to Loft. We hnd I with a minimization technique [Press, 1986]. Although techniques

exist that limit the search domain of r. the minimization is, nonetheless, very compute intensive. We
intend to develop methods to accelerate hnding the closest point on complex, parametrically defined
skeletons. The surface shown in Figure 10 would be very difficult to specify parametrically.
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Figure l0: An implicitly defined "petal"

Hybrid Techniques

It is simple to bound an implicit object with a plane, but it is a quite different matter to create an object

that consists of a planar piece; such a piece has no volume and can not be represented implicitly. Even

if a thin piece had some thickness, the polygonization sampiing size. although practical, may result in
gaps in the surface. Blends may best be modeled as a combination of solids. but webs (as in Figure l0)
are. in many cases, best modeled as a surface. Consider a cross-section of the vein and web. shown in
Figure 11, left; there is no topologically consistent way to define an rnside/outside test for this
combination of primitives, as shown in Figure 11. middle.

Consider, then, this proposal whereby parametric surfaces may be combined with implicit surfaces.

Referring to Figure 11, right. we consfuct two spatial paftitionings, one that represents the web and

one that represenls the vein. In cell I the web is defined but the vein is not, since its thickness is less

than the size of the cell. Cell 3 contains the web but no edges of the vein. although the entire cell is

contained within the vein volume. Cell 2 contains both web and vein surfaces. We DroDose that the

two partitionings be combined into one, observing these rules:

where the parametric surface (the web) exists and the implicit surface

and volume (the vein) do not. as in cell 1, the cell is polygonized

according to the parametric surface,
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where the implicit surface exists and the parametric does not. as in

cell 4. the cell is polygonized according to the implicit surface.

where the parametric surface and the implicit volume exists, but the implicit
surface does not, as in cell 3, the cell is not polygonized.

where the parametric surface and the implicit surface exist, as in cell 2" the

cell is polygonized by connecting the parametric-cell intersection with the

implicit-cell intersections. as shown by the dashed lines.

Figure 11: Combining parametric and implicit surfaces

Difficulties

We have discussed a number of advantages in modeling with implicit surfaces. They include ease of
blending and offseting. Often constraints based upon distance are more simpiy and intuitively
expressed implicitly. Complex implicit surfaces do not result in correspondingly complex
polygonization software. whereas the polygonization of parametric surfaces often requires a custom

implementation for each surface type. Implicit functions are, however, less tractable in a number of
ways; we discuss some of these in this section.

Surfoce Generation

We define surface generation to be the generation of points on a surface. This is convenientiy
performed for a parametric surface by sweeping each parameter through its domain as the parametric

equation is evaluated. lt is possible to convert a low order implicit function to its parametric

equivalent, and then generate the surface: but this becomes difhcult or impossible for higher order

functions [Sederberg, 1986].

weo

CELL 3
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For the arbitrary, procedural implicit function this is not possible. Instead, the function must be

sampled, in search of those points that satisfy the implicit equation. This is a numeric technique,
sensitive to those problems associated with sampling; the sampling errors may be minimized with
adaptive techniques [Bloomenthal. 1988].

The underlying principal of numerical implicit surface generation is that the surface must intersect the

segment an lf i(a) ( 0 and (b) > 0; thus space must be sampled for pairs of points with oppositely
signed function values. The simplest approach is to sample space on a regular, three-dimensional grid;
the resulting voxel array may be searched for segments spanning f = 0, and points on the surface

interpoiated from these segments [Artzy, 1980]. Generating a voxel aray is computationally intensive:

further. the anay may suffer from aliasing due to under-sampling, resulting in loss of detail. Generally.

voxel imaging techniques are employed where data is relatively easy to obtain. such as in medical

laboratories: it is less appropriate for modeling surfaces, which are sparse in three dimensions.

A more efficient method of surface generation is to track the implicit function, adaptively partitioning

space into cells. A number of n-dimensional approaches [Dobkin, 1986. Allgower. 1987] utilize the

simplex as a cell; others utilize the cube [Wyvill, 1986]. In all cases, surface points are found by

interpolation along cell edges that span the surface. The partitioned cells may be organized by hashing

[Wyvill. 1986]. or by a more structured representation such as an octree fBloomenthal, 19S8]. Figure 12

illustrates this method; an octree, shown in blue, is created either by recursive subdivision of a root
cube. thus converging to the implicit surface, or by propagation from a smaller. seed cube. Once the
octree is created, its terminal nodes, shown in green, are tested for intersection with the implicit surface.

The resulting points, shown in yellow, are connected together to form a polygonal approximation to the
implicit surface, shown in red.

Adaptive sampling of the function is possible: a restricted octree [Von Herzen, i987] is used in order to

retain the polygonal structure and avoid discontinuities along faces of differing sizes [Bloomenthal,
re88l.
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Figure [2: Inrplicit surface organized by an octree

If an implicit surface is polygonized, it becomes navigable. (compare with the boundary or evaluated

CSG form [Mortensen 1985]) that is, one is able to move along the surface, fiom one surface point to
another. Arrangements of objects, such as one resting upon another, as well as other applications,
become possible, generally. only when a surface is navigable. To iilustrate. Figure 13 presents an

implicit surface that has been covered with blades of grass.

l,'igure l3: A navigable surface
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Shaded Images

The difficulties in rendering an implicit surface are related to those of generating the surface: that is,

there are no incremental methods comparable to the incremental scan-line techniques commonly
employed for poll'gonal surfaces. Algebraic surlaces may be ray-traced [Hanrahan, 1983, Kalra, 1989]

or rendered using incremental, scan-line techniques [Sederberg, 1989], but no incremental techniques
exist for abttrary implicit surfaces. One method is to convert the implicit surface to a polygonal

representation. to be rendered by a conventional pol-vgon renderer. This is the method used for most
of the images in this paper.

Alternatively, the implicit surface may be rendered by ray tracing. J'here are practical methods for ray

tracing algebraic surfaces [Hanrahan, 1983], but if the implicit function is procedural. with roots that

can not be predicted. then each ray must carefully sample space throughout its (infinite!) length. The

task becomes more manageable if finite bounds can be placed on the function.

To reduce the amount of computation when ray tracing, Glassner suggested partitioning space with an

octree. reducing the distance across which a ray must search for a root [Glassner, 1984]. (Partitioning

an implicit surface for the purpose of ray-tracing is comparable to the subdivision used for parametric

patches when rendenng with a z-buffer [Catmull. I974]). Signihcant computation is still required tr.r

find a root along even a short line segment, but this is compensated by the improved simulation of
optical phenontena as contpared with other hidden surlace algorithms. ln the figure below, we ra)'

lrace an implicit surface to simulate shadows and transparency.

"".39" 
.,.

I:igure l4: A ra1-trtced illrplicit surface
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Ray tractng does not produce a navigable surface; thus, Figure 13 could not be created through

conventional ray tracing techniques because those techniques would not permit the placement of grass

along the object's surface.

Line Drawings

In addition to visible surface rendering, there is one known technique for visible line rendering of
implicit surfaces, suggested by Ricci [Ricci, 1973]. The implicit surface is intersected with a series of
planes, perpendicular to the line of sight and receding from the viewer. For each plane, the function

contoun are drawn, excepttng those parts obscured by' previous planes. Ricci's examples were limited

to algebraic functions: we have extended the method to arbitrary implicit surfaces.

For a procedural implicit function, the plane must be examined everywhere for roots, unless the

implicit function has been spatially partitioned. lf the partitioning is an octree, it is simple to intersect

the plane with the terminal cubes of the octree (all terminal cubes are presumed to intersect the

surface); the intersection proceeds hierarchically: child cubes need be tested for intersection only if
their parent is intemected. The actual points of intersection can be computed linearly. once the comers

of the cube have been evaluated with respect to the plane equation (see Figure 15). The intersection
points may be ordered to form a cube-plane polygon.

Given a cube-plane polygon, the contours can be computed. First, points satisfying the implicit
function are found along the polygon edges. A new point satisfying the implicit equation is found

approximately midway along the segmenu then the segment is divided into two, and the process

repeated until the segment lengths are deemed small enough for presentation. Should P"f'b fail to span

a root, a is increased. The result, using this new technique, is a drawing of the surface's contour lines.

Pa=M+dv/lvl

M=
(PO + P1)/2

ph-

M.dvllvl

Terminal Octree Cube

(T) Positive Evaluation of f:
- O Negative Evaluation of f

O Point on Surface (f = 0)

o New Contour Point

.lz

Figure l5: Planar contour generation
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Forrest has discussed contour lines with respect to the display of shape information for surface patches

[Forrest, 1979]. He stated that contour lines have an "exact, unambiguous, geometric interpretation . . .

it is arguable that of all the line drawings possible, a set of surface sections is the most useful in
determining shape." In the hgure below we compare contour (section) hnes with a visrble line
rendering ofpolygons.

Figure l6: Visible line rendering of an implicit

surface (left) and a polygonal equivalent (right)

Surface Texture

In this section, we are concemed with the assignment of parametric ("texture") coordinates to points on

the implicit surface. Parameterization is important in generating images with realistic surface texture

without explicitly modeling surface microstructurel bump and texture mapping both rely upon surface

parameterization. For parametric surfaces, the obvious parameterization is trivial to consffuct. yet it
may not be the desired one. Creating a "natural" parameterization that follows the skeleton of the

surface may be desirable, and equally difficult to construct for implicit and parametric surfaces.

One approach is to parameterize a polygonal model derived from the impiicit model, assigning

parametric coordinates to the polygonal vertices in such a way that the parametric distance between

two vertices is proportional to their geometric distance. For non-developable surfaces some variation

in the proportion becomes necessary; for example, degeneracies occur at the poles of a sphere or along

the seam of a tapered cylinder. We do not pursue this method, but refer the reader to related work

[Gagalowicz, i985].
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Consider assigning parametric ("texture") coordinates to the branching cylinder. So as to avoid

discontinuities in the mapping. we begin with the initial a-coordinate assignments shown in Figure 17.

Note that the two branches and the parent agree with each other in their z-values for 0.0 and 0.5. The

remaining values are assigned through a simple transformation of a surface vertex into the xy plane

defined by the local coordinate system of the nearest point on the spline. It is this use of the cylinder's

axis that associates the parameterizatron with the surface structure. (The v-value of the parametric

coordinates is determined from the distance along the spline" but we discuss only the calculation of the

a-vaiue, which is more interesting).

The difficulty arises with the gap between iines of equal u that occurs in a roughly triangular region in

the center of the branching cylinder. If we think of this as an "island" and the lines of constant r,l as

"topographic" contours, then. intuitively, we wish to create a "hill" on this island. We can do so by

increasing the a-value with decreasing proximity to the center of the island. We define this center as

the point at which the r.r-value is 0.25 and the distances from the surface vefiex to the two splines are

equal. The image below, middle, is without compensation for the island; the image to the right has this

compensation. The important criterion is the evenness of line spacing (the ripples are a rendenng

artifact). 
';:W1!.,|:

I

Figure 17: Texture assignment and adjustment to an implicit surface

This is an area for additional investigation, but the example demonstrates that a mapping can adhere to

the defining structure ofthe surface.

Conclusions

Implicit surfaces offer a number of advantages for the designer, but pose a number of difficulties for
the computer graphicist who needs to manipulate the surface in traditional ways: in this paper we have

categorized the problems and offered some solutions. Although experience with implicit surface design

is limited, it is clear that complex, constrainable shapes can be expressed, often with comparative ease.
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