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Chapter 6: Hand Crafting

To see a world in a grain of sand

And a heaven in a wild flower,

Hold infinity in the palm of your hand

And eternity in an hour.

(William Blake)

In this chapter we model a biological form, the human hand.  It is the most

complex body part, and will exercise and extend several of the methods we have

discussed.  Despite its complexity, the design of the hand required only a few

hours, as explained in section 2.7.  We utilized a skeleton derived directly from

figure 2.4, right.  It consists of a set of simple elements for the palm and fingers,

with additional elements for tendons and veins.  Although the resulting surface is

smooth, we suggest methods for the addition of non-smooth features such as

creases and fingernails.

The human hand is not a simple geometric union of its component fingers and

palm.  The skin that covers muscle and bone yields a blend of these components,

which we believe can be represented by a convolution surface.  To accommodate

the relative flatness of the palm and the oblong cross-section of the fingers, we

extend convolution from the one-dimensional skeletal elements described in the

previous chapter to support two-dimensional skeletal elements, such as polygons.

6.1 Two Dimensional Skeletal Elements

As with one-dimensional skeletal elements, the convolution surface for two-

dimensional skeletal elements is evaluated as the sum of independent primitives.

We continue to assume the convolution filter is spherically symmetric so that the
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convolution is independent of polygon orientation.  And we assume the kernel is

separable into the product of lower dimensional terms, namely, an ‘integration

filter’ in the plane of the polygon and a ‘distance filter’ perpendicular to the plane.

For a polygon lying in the xy-plane, we rewrite equation 5.25 as:

(6.1) f(p) = c − (h ⊗ s) (p) = c − ∫ ℜ3 h(p−u) s(u) du =

c − ∫
ℜ2 e

−(pxy−uxy)2/2 duxy e−pz2/2.

The distance filter is the filter kernel evaluated according to distance from p to the

xy-plane; the integration filter is the two-dimensional convolution of the polygon

in the xy-plane.  Unlike the single, one-dimensional array required to integrate a

line segment, a two-dimensional array is required for each polygon.

Figure 6.1 illustrates the convolution process.  pxy is the projection of p onto the

plane of the polygon, and I is the image of the filtered polygon, i.e, the integration

filter, which we will call the ‘convolution image.’  That is,

(6.2) f(p) = c − h (d) I (pxy).

For several arbitrarily oriented polygons, each represented by image Ii, this is

equivalent to:

(6.3) kΣi h (qz) Ii (qxy)

where k is a constant (typically the reciprocal of the maximum image value) and q

is p mapped into the coordinate system for Ii.  Details concerning this mapping are

given in the appendix.  In practice, I is a bilinear interpolation of four samples; it is

set to zero if the projection of q is beyond the bounds of the image.  These bounds

must accommodate the polygon plus the kernel support; otherwise, parts of the

kernel domain are undefined during convolution beyond the edge but within the

influence of the polygon.
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Figure 6.1 Computation of f(p)

Although there exist analytical methods for convolution of a two-dimensional

polygon [Duff 1989], we employ conventional, numerical methods, such as those

used for image processing.  These work well and create computationally efficient,

two-dimensional arrays.  In [Bloomenthal and Shoemake 1991] the polygon was

rendered on an image raster using a solid color, and then filtered with an

appropriate two-dimensional kernel.  Resulting values were stored as eight-bit

integers.  This quantization can introduce discretization artifacts that can be

overcome by the use of a real-valued array.

The Gaussian kernel has infinite support, which complicates the production of a

discrete representation.  This was overcome in the one-dimensional case by use of

a large, one-dimensional array.1  For two-dimensional arrays, however, we must

accept a lower resolution in view of the O(n2) demand on memory.  In the

examples presented in this chapter, the resolution provided for the filter support is

scaled according to the desired object thickness and polygon raster resolution.  For

example, given a square of side length ½, a desired thickness of 1/10, and a target

raster width of 200, the filter support should be 200(0.1/0.5) = 40 pixels.

The shape shown below was defined by a skeleton consisting of a trapezoid and a
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rectangle, each producing a convolution image.

Figure 6.2 Skeleton and Resulting Shape (three orientations)

The image resolution used above was 80 by 80, which appears sufficient for this

simple skeleton.  In the following figure we degrade the image resolution.  Serious

discretization artifacts, such as scale changes and shifts in vertex locations, can be

seen for resolutions less than 40 by 40.

Figure 6.3 Effect of Image Resolution

left to right: 40 by 40, 20 by 20, 10 by 10, and 5 by 5 array size 

Each evaluation of f(p) requires approximately 35 floating point operations

(approximately 6 for the filter, 11 for bilinear interpolation, 6 for distance, and 12

for projection), which compares favorably to the inside-polygon test required for

distance surfaces.  A two-dimensional convolution image requires significant

computation, but need be calculated only once per skeletal polygon.  The designer
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is free to polygonize the implicit surface at different resolutions or change the

orientation of the skeletal elements, without recomputing the convolution images.

6.2 Skeletal Contiguity, Cross-Sections, and Bulge and Crease Prevention

Towards the end of chapter 5 we expressed some dissatisfaction concerning the

implementation complexity and geometric quality of the combination surface

developed to prevent bulges that result from ramified skeletons.  As observed in

section 5.6.14.4, bulging is a consequence of increased skeletal density near the

ramiform junction.  In particular, the line segments of the starfish all meet at one

point.  If the skeleton were a simple cross, we could think of it not as four segments

meeting at a point, but as two intersecting lines.  Clearly, the skeletal density

increases where the lines overlap.  A comparable polygonal skeleton would consist

of two overlapping polygons, as shown below, left.  We speculate that a contiguous

(i.e., abutting and non-overlapping) skeleton, such as below, right, would alleviate

the bulge.  To prove this, and to explain the conditions under which it is true, we

must examine the cross-section of a convolution surface derived from a polygon.

Figure 6.4 Overlapped (left) and Contiguous (right) Skeletons

As noted in section 5.6.11, the convolution surface of a line segment passes

through its endpoints but does not produce a perfect hemisphere.  Similarly, the

surface passes through the edge of a polygonal skeletal element but, as shown

below, does not yield a truly semi-circular contour.  As shown below, different

filter kernels require different polygon widths to produce equally thick surfaces.

This is because, as defined in section 5.6.9, the domains differ and the integrals

must be scaled to yield unit area over their domains.  The Wyvill yields a near-
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circular cross-section, which is an important design consideration.

polygon  centerpolygon

maximum
thickness

r

Figure 6.5 Surface Cross-Sections for Different Kernels

left: Wyvill (width = 2r), middle: B-Spline (4r), right: Gaussian (5r)

For each of the filters shown above, the polygon width equals the effective support

of the filter.  This means, at a point above the center of the polygon, the

integration filter yields 1.  A point r distant above the polygon center yields a

distance filter value of ½; thus, the point is on the surface.  Now, consider

widening the polygon; this will not change the function value for points that were

above the polygon center, but it will create a ‘plateau’ along the top and bottom of

the surface, as shown below, left.  If we narrow the polygon, however, there is no

point over which the integration filter is 1.  This reduces the thickness of the

surface, so that the surface is less than r from the polygon, as shown below, right.

Figure 6.6 Varying Polygon Width (Wyvill Kernel)

left: wider polygon widens the surface, right: narrower polygon reduces thickness

Now, consider the contiguous skeletons, shown below.  For a polygon whose width

equals the support of the filter kernel, the entire filter projects onto the polygon,

and the very centers of the polygons will yield an integration filter value of 1.  For

the wider polygon, the central region where the integration filter is 1 is larger,
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creating a plateau.  But for the narrower polygon, only at the junction center is

there sufficient room for the integration filter to reach 1; elsewhere the kernel is

clipped and the integration filter is less than 1.  A bulge will occur at the center of

the junction of the narrow polygons, but not with the wider polygons.

peak thickness
along segments

peak thickness
along strips

peak thickness
at single point

Figure 6.7 Affect of Varying Polygon Width on Integration Filter

left: polygon width < 2r, middle: polygon width = 2r, right: polygon width > 2r

Thus, for an appropriate choice of polygon width, a contiguous polygonal skeleton

can yield ramiforms without bulge or crease.  The cross-sections of surfaces are not

perfectly circular, however, unlike those for line segments.2  In the illustration

below, the above skeleton is articulated.

Figure 6.8 A Smoothly Folding, Bulge-Free Form
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Although the above forms appear smooth, we speculate that improved fairness of

the skeleton, as shown below, can increase the fairness  for the surface.  We have

not, however, performed a detailed analysis of the fairness of convolution

surfaces.3

Figure 6.9 Improved Skeletal Fairness

left: contiguous skeleton, right: smooth contiguous skeleton

6.3 Articulation

In the previous section we discussed the ‘plateau’ that develops over wide

polygons.  Because of the superposition property of convolution, this plateau may

develop from an arbitrary configuration of coplanar, abutting polygons, and will

be seamless.  This seamlessness provides flexibility in the definition of polygonal

skeletons.  The following articulation, in which an upper rectangular skeletal

element rotates into alignment with a lower rectangle, demonstrates this seamless

quality.

Figure 6.10 Seamlessness 
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6.4 Muscles and Arm

In [Bloomenthal and Shoemake 1991] convolution was applied to a polygonal

skeleton to model the geometry of a human arm.  We review this process here,

providing additional details regarding the ‘muscles’ used in the model.  Each

muscle was defined by a planar polygon, as shown below.  This simple

representation was meant to facilitate interactive design.  Much improved

representations for biological muscle may be found in [Chen and Zeltzer 1992]

[Smith 1990] and [Waters 1987].

tendon1 tendon2bulge

wt1 t2bw w

Figure 6.11 Individual Muscle and Parameters

As suggested in [Bloomenthal and Shoemake 1991], finer control over the surface

can be obtained by a) the use of kernels of differing support, and b) the association

of weights with the skeletal elements.  In particular, a weight may be given to each

polygon vertex before its initial rendering, thereby modifying the thickness of the

resulting implicit primitive.  Or, the entire polygon image can be scaled by a

‘weight image.’

Weighting can provide for geometric taper.  For example, the muscle tendons are

smaller in cross-section than the muscle itself.  Therefore, the tendons must have

reduced thickness as well as reduced width.  This was accomplished by assigning

weights to the muscle polygon.  The initial image and convolved image are shown

below. 
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Figure 6.12 A Muscle

left: weighted skeletal element, right: convolution image

The five muscles were arranged as in the figure below, left, and their convolutions

were summed to produce the surface shown below, right.4

upper arm

forearm

(2 muscles)

(3 muscles)

Figure 6.13 An Arm

left: arrangement of muscles, right: resulting surface

6.5 The Hand

The above arm is a collection of independent ‘muscles.’  We achieve greater

definition in the hand by representing the bones of the palm and of the fingers

with contiguous polygonal elements, as described in section 6.2.  Additional one-

dimensional elements represent the adductor pollicis muscle near the thumb [Gray

1973], the veins on the back of the hand, and the tendons to each of the fingers.
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Modeling the human hand has interested several researchers.  In [Thompson et al.

1988] mechanical aspects of the hand are simulated by manipulating the position

and orientation of ‘bones;’ an overlying skin is not produced, however.  In

[Gourret et al. 1989] the hand is modeled as a deformable surface overlying a bone

structure; the surface is parametrically defined and deformed according to forces

acting upon the hand.  In [Forsey 1991] a smooth, hierarchical B-spline surface is

generated from articulated, contiguous skeletons, accounting for bulges and

creases of the hand.  And in [Landreth 1994] is developed a sophisticated

combination of varying finger cross-sections and flexible inter-finger webbing,

involving considerable user interaction with a commercial design system.  All of

these methods define a surface parametrically, requiring a predefined (or user

defined) surface topology.

As we have argued in previous chapters, an implicit definition permits the designer

to concentrate on the skeleton.  There is at least one previous example of an

implicitly defined hand provided in a tutorial for a commercial design package

[Patterson 1994].  The tutorial is lengthy and yields an unconvincing model.  The

reasons are a) a hierarchical representation is not provided for the user, b) the

implicit primitives are ellipsoids, rather than convolution surfaces, and c) there is

no graphical interface for the user (in comparison, we regard the sketch in figure

2.4 as a graphical interface for the hand developed in this chapter).

The sketch in figure 2.4 was readily converted to the finger specifications outlined

in section 2.7.  As diagrammed below, the skeletal primitives of the hand include:

palm bones:

finger bones:

tendons:

veins:

muscle (adductor pollicis):

a contiguous set of 15 triangles,

a contiguous set of 48 triangles,

five sets of connected line segments, 10 in total,

two sets of connected line segments, 11 in total,

one line segment,

resulting in a total of 85 skeletal elements.  The coloring in the shaded image
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derived from colors assigned to the skeletal elements. 

bones
tendons
veins
muscle

Figure 6.14 Skeleton and Hand

The following page displays individual and summed convolution surfaces that

constitute the hand.  At the upper left are the fingers in isolation; at the upper

right are the tendons in isolation.  The middle left shows the palm, the middle

right shows the veins and the thumb muscle.  At the lower left is the combination

of palm and fingers, and at the lower right is the complete hand, consisting of

fingers, palm, muscle, tendons, and veins.  The images are derived completely

from geometry, without any surface mapping.  The geometry is free from seams

and unnatural creases, which can be detected in several of the parametrically

defined models.
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Figure 6.15 Individual and Combined Components
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Convolution surfaces are a flexible and intuitive method for surface design based

on skeletons.  As illustrated below, the convolution surface follows a subset of a

skeleton in a predictable manner.  This affords the designer a stable environment

within which to modify or complicate his or her design.

Figure 6.16 Palm and Tendons

6.6 Convolution of Volumes

We noted in the previous chapter that it is important that the convolution kernel

be spherically symmetric so that the convolution surface is independent of skeletal

orientation.  For one-dimensional curves, this implies a circular cross-section.  For

planar skeletal elements, this implies a back-to-front (not bilateral) symmetry of

each component surface.  In sections 5.6.13 and 7.3 we discuss non-circular cross-

sections for curves, and in section 6.4 a bi-directional ‘weight image’ could produce

a non-circular cross-section for polygons.  Alternatively, an asymmetric shape

could be obtained by convolving an asymmetric volumetric skeleton.

Convolution of a volume was introduced in [Colburn 1990] in order to smooth

previously defined solid objects.  As shown below, just as convolution surfaces

tend to interpolate the endpoints of a segment and the edges of a polygon, so they
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tend to interpolate the surfaces of a volume.  To accommodate volumetric skeletal

elements, the discrete two-dimensional array discussed in this chapter could be

extended to a three-dimensional array.  We have not done so, however, because we

prefer the design qualities of the one and two-dimensional elements.  For example,

these elements tend to inflate the skeleton, giving it body; convolution of a

volume, however, tends to bevel and fillet, but not inflate, the skeleton.

Figure 6.17 Cross-Sections of Differently Dimensioned Skeletal Elements

left: segment, middle: polygon, right: volume (skeletons are dashed)

6.7 Unwanted Blending

A common concern related to the implicit blend of volumes is the prevention of

unwanted blends.  One prevention technique is the judicious application of

‘grouping’ [Beier 1993], [Opalach 1993].  This is a technique whereby certain

volumes are allowed to blend with some but not all other volumes.  For example,

in the illustration below, limb a is allowed to blend with limbs b and e, b is allowed

to blend with a, c, and e, and e is allowed to blend with a, b, and d.  But c is

allowed to blend only with b, and d is allowed to blend only with e.

a

b

c d

e

Figure 6.18 Skeletal Grouping
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An alternative approach is to obtain finely detailed blending by employing very

small primitives.  This is reminiscent of the ‘strand’ model employed in [Greene

1991] and [Holton 1994].  The reduced influence of each skeletal element would

reduce unwanted blending.  It would be instructive to compare the ramiform

blend of many small strands against that of a few large limbs.

It is also possible to provide implicit ‘separators’ between skeletal elements; these

would be negatively valued functions that block the blending of adjacent

primitives.  This may, however, be an undue burden on the designer.  Further, it

isn’t necessarily reasonable to prevent all forms of unwanted blending.  In

particular, if an animator causes two primitives to actually intersect, it isn’t possible

for the implicit surface function to maintain a separation.  This problem can occur

in the animation of non-implicit forms.  Polyhedral primitives, for example, can

intersect; ultimately the animator must prevent such an occurrence, or there must

be limits on the articulation of a skeleton, for both parametric and implicit models.

Another alternative, proposed in [Gascuel 1993], is the compression of implicit

primitives if their volumes intersect.  Whichever combination of techniques is

found suitable should operate in a natural manner and without discontinuities in

the implicit primitives.

6.8 Details, Details

We have presented techniques whereby individually defined implicit primitives

are combined to produce a smooth, macro-structured hand.  Highly realistic

models also require details such as fingernails and creases.  The implicit definition

of fingernails would, presumably, require a non-manifold definition, as described

in chapter 4.

Creases tend to appear at points of maximum skin compression.  Conversely,

maximum smoothing seems to occur at points where skin is stretched, since this

suggests an inward, smoothing pressure on muscles and tissue.  Thus, the location
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of creases and (intentional) bulges can be linked to skeletal articulation.  In

particular, we wish to mimic the relationship between surface and skeleton

illustrated below.  We speculate that negative functions can implement creases

near concave portions of a joint, and positive functions can implement bulges near

convex portions of a joint.  Alternatively, as mentioned in section 3.6, creases can

be added to an otherwise smooth surface subsequent to its conversion to a concrete

representation. 

 

Figure 6.19 Creased and Stretched Surfaces

(skeleton is dashed)

Although we have included veins as a primitive in the construction of the macro-

structured hand, it may be appropriate to regard them as detail placed upon the

macro-structure.  Indeed, vein placement was the most difficult task in the design

of the hand.  In section 3.6 we considered navigation along a concrete surface as a

means to distribute surface detail.  An interesting use of this technique would be to

place the vein skeletal elements after an initial polygonization of the palm, fingers,

and tendons.  Once the vein skeletal elements are in place, the hand could be

polygonized again, with the additional detail.  In [Jevans et al. 1988] are provided

techniques to improve the performance of polygonization when local changes have

been made to the defining function of a previously polygonized surface.

6.9 Conclusions

We have implemented a model for the human hand that consists of skeletal

elements representing the palm of the hand, its fingers, tendons, and veins, and the

prominent adductor muscle for the thumb.  We have not implemented details such

as skin creases or fingernails, nor have we implemented grouping to avoid
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unwanted blending.  We have yet to animate the hand to observe its articulated

behavior.  Because the skeleton is expressed in terms of joint angles for the base of

the fingers and for the knuckles, articulation is readily specified.  Animation may,

however, indicate a need for additional skeletal elements representing, for

example, the webbing between fingers.

A design environment utilizing convolution surfaces enables the creation of

complex, well-behaved shapes through the specification of the position,

orientation, scale, and weights of individual polygonal skeletal elements.  In using

convolution, however, the designer loses explicit control over fillets and chamfers.

This is more than compensated by the generality of convolution blending.

Convolution is an integral, not a summation of discrete pieces.  That is, the planar

skeletal elements are fragmented into an infinitude of points, each scaling a replica

of the filter kernel.  The superposition of these kernels is the three-dimensional

convolution of the polygon with the filter.  Resulting surfaces are quite smooth

and are bulge-free provided the skeletal elements are contiguous and at least as

wide as the full filter support.

Although in section 6.1 we suggested a method to determine filter support in

pixels given polygon size and desired volumetric thickness, the determination of an

acceptable resolution for the rasterized polygon given the filter width, the size and

shape of the polygon, and the sample size used during polygonization, remains a

subject for continued investigation.  Another interesting area of study is the

modification of primitive thickness, as described in section 6.4.

6.10 Notes

1. In this chapter, a three-dimensional, separable cubic B-spline filter

approximates the Gaussian.  The B-spline filter has finite support and approximate

spherical symmetry.

2. The choice of ½ as an iso-contour value was made to force the surface through
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the endpoints of a segment or the edges of a polygon.  If we wished for greater

inflation of the surface, the iso-value can be lowered or the implicit primitives

scaled.  This, in fact, was done for the arm (section 6.4) and hand (section 6.5).  As

observed in section 5.6.11, the normalization by r for the distance filter (equation

5.31) must occur for the integration filter as well.  This means that changing r in

order to inflate the surface beyond the edges of the polygon will fail because the

polygon will need to increase in width in order to span the increased domain of the

integration filter. 

3. We speculate that the continuity of a surface is Gs+k, where the kernel has Ck

parametric continuity and the skeleton has Gs geometric continuity.  There is a

step function across both one-dimensional and two-dimensional skeletons, so that

their geometric continuity in three-space is G0.  The geometric continuity of a

‘density skeleton,’ i.e., a volumetric skeleton consisting of a density distribution,

would be greater than zero.  Thus, for the skeletons used in this dissertation, the

geometric continuity of the convolution surface is fixed by the convolution kernel.

The fairness, however, also depends on skeletal fairness.

4. This image was generated before the correction of errors in the surface normal

computation, which produced the mottled appearance of the surface.

I try to testify in my prints

that we live in a beautiful, orderly world,

and not in a formless chaos, as it so often seems.

(M.C. Escher)


