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Chapter 3: Implicit Surfaces

For my own part I am pleased enough with surfaces . . .

what else is there?  What else do we need?

(Edward Abbey)

3.1 Introduction

An implicit surface is a set of points p such that f(p) = 0, where f is a trivariate

function (i.e., p ∈ ℜ3).  The surface is also known as the zero set of f and may be

written f-1(0) or Z(f).  According to the implicit surface theorem, if zero is a regular

value of f, then the zero set is a two-dimensional manifold.  An iso-surface is a

similar set of points for which f(p) = c, where c is the iso-contour value of the

surface.  The function f is sometimes called the implicit function, although we

prefer implicit surface function.  A review of the salient properties of implicit

surfaces may be found in [Hoffmann 1989].

In many cases, f partitions space into an inside and an outside.  By convention, f is

usually written such that f(p) < 0 describes a volume of points enclosed by the

surface, f(p) = 0.  This ability to enclose volumes and the ability to represent

blends of volumes endow implicit surfaces with inherent advantages in geometric

surface design.  This is particularly so for skeletal design, as the relation between

skeleton and surface is, generally, volumetric.  Inherent in this relation is the use of

a distance metric between the point p and the skeleton.  In chapter 5, we examine

these metrics according to their blend properties and ease of implementation.

In chapter 2, we suggested it is easier for the designer of natural forms to work

with skeletal geometry than with the usually more complex geometry of the

corresponding surface.  The volumetric relation described by f(p) < 0 underlies the
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correspondence between skeleton and surface.  Thus, the combination of skeletal

and implicit techniques is particularly appropriate for many natural forms.  The

smoothness sometimes associated with natural forms may be obtained as a blend

of component volumes, which we call implicit primitives.  The skillful combination

of primitives is an important task for designers who wish to define implicitly an

interesting or useful shape.  Primitives may also be combined by set operations

and functional composition (such as deformations), but blends are the most

important combination concerning the design of smooth surfaces.

Traditionally, computer graphics has favored the parametric surface over the

implicit because the parametric is easier to render and is more convenient for

certain geometric operations, such as the computation of curvature or the control

of position and tangency.  Specifically, ‘‘parametric surfaces are generally easier

[than implicit surfaces] to draw, tessellate, subdivide, and bound, or to perform any

operation on that requires a knowledge of ‘where’ on the surface’’ [Rockwood

1989].  Parametric and implicit surface representations are also distinguished by

the compactness of their mathematical expression [Ricci 1973].  This seems

particularly true for definitions that involve distance.  For example, given a sphere

centered at c, with radius r, the parametric definition is:

(3.1)     (px, py, pz) = (cx+rcosθcosφ, cy+rsinθ, cz+rcosθsinφ),
             θ ∈ (0, π), φ ∈ (0, 2π).

The implicit definition is considerably more compact:

(3.2)     (px − cx)2 + (py − cy)2 + (pz − cz)2 − r2 = 0.

Implicit surface definitions are very general; they can represent discrete pointsets,

algebraic surfaces, and procedurally defined implicit surfaces.  A discrete pointset

can be represented by a function that returns 0 for p a member of the set, 1

otherwise.  Generally, this is not useful because the function is discontinuous;

pointsets can, however, be adapted for use in surface fitting [Hoppe et al. 1992].
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Algebraic surfaces are commonly found in computer graphics, and include

quadrics [Foley et al. 1990] and superquadrics [Barr 1981].  There has been a recent

renewal of interest in general algebraic surfaces [Sederberg 1985], [Sederberg

1987], [Bajaj 1992].  They may be ray-traced [Blinn 1982], or, in the case of quadric

surfaces, they are suitable for incremental scan-line techniques [Mathematical

Applications Group 1968].

Although simple distance constraints can be expressed analytically, the defining

function need not be analytic, but, as observed in [Ricci 1973], may be procedural.

That is, a designer is free to specify any arbitrary process that, given a point in

space, computes a real value.  The procedure may employ conventional

mathematical functions, conditionals, tables, and so on.  A procedurally evaluated

implicit surface function is not the same as a ‘procedure model’ [Newell 1975].

Both involve procedures, but the former is utilized to evaluate a point in space and

the latter is utilized to construct a parametric surface.  An example procedural

implicit surface, discussed in section 5.6.14.1, performs several geometric

operations to yield a value for f that would be difficult to express analytically.

In the following sections we consider several aspects of an implicit surface,

including its relation to solid modeling, its application to skeletons, its visualization

and polygonization, and its refinement by added surface detail.

3.2 Solid Modeling

In 1973, a ‘constructive geometry’ was introduced for the purpose of defining

complex shapes derived from operations (such as union, intersection, and blend)

upon primitives [Ricci 1973].  The surface was defined as the boundary between

the half-spaces f(p) < 1 and f(p) > 1; the former was considered the ‘inside,’ or solid

portion, of an object.  From this initial approach to solid modeling evolved

constructive solid geometry, or CSG.  With CSG, an object is evaluated ‘bottom-up’

according to a binary tree.  The leaf nodes are usually restricted to low degree
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polynomial primitives, such as spheres, cylinders, ellipsoids, and tori.  The internal

nodes represent Boolean set operations.

The difference between solid modeling and implicit modeling is somewhat subtle.

The surface of a solid model must enclose a finite volume.  Consequently, the

surface is everywhere equivalent to a two-dimensional disk and is, therefore, a

two-dimensional manifold [Mäntylä 1988].  Implicit surfaces can enclose finite

volumes as well; for example, f(x, y, z) = x2+y2+z2−1 represents the unit sphere.

But implicit surfaces can also represent unbounded surfaces; for example, f(x, y, z)

= z represents the xy-plane.

Solid modeling is not limited to constructive models but may include, among

others, decomposition models and boundary models [ibid.].  CSG is, however, the

dominant form of solid modeling.  The literature of constructive solid geometry

emphasizes the robust representation of all intermediate results within the tree-

structured evaluation.  Usually this intermediate representation is the boundary

representation, or BRep.  It is a versatile representation from which several

geometric properties, such as volume and center of gravity, are readily computed.1

It is generally accepted in solid modeling that boundary representations must be

closed under all Boolean operations.

The requirement to maintain intermediate boundary representations places an

extraordinary demand on the process of CSG evaluation.  These concerns are

expressed in [ibid.]:

Unfortunately,  Boolean  set  operations  algorithms  for  boundary

representations are in general plagued by two kinds of problems: First, to be

effective, a set operations algorithm must be able to treat all possible kinds of

geometric intersections . . . [which] easily leads to a very [complex] case

analysis.  Second, the very case analysis must be based on various tests for

overlap, coplanarity, and intersection which are difficult to implement
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robustly in the presence of numerical errors.

This explains the preoccupation in CSG literature with the robustness of edge-

edge and edge-surface intersections.  In comparison, concrete representations for

implicit surfaces are formed without intermediate evaluations, greatly reducing the

affects of numerical instability.  Additionally, implicit surfaces need not be defined

according to a binary tree or any other graph.2

Early development of geometric modeling, which embraces both surface and solid

modeling, was motivated by engineering applications in the automotive, aerospace,

aviation, and shipping industries and by training applications such as real-time,

interactive flight simulators.  This development involved an interplay of

visualization and geometric modeling techniques that inextricably linked computer

graphics and geometric modeling.  For example, as graphics systems became faster

and more flexible, designers were encouraged to develop ever more sophisticated

models, many of which required new techniques in geometric modeling.  Indeed,

much of the development in surface and solid modeling is reported in the

literature of computer graphics.

3.3 Skeletal Design

Having discussed the value of skeletally defined implicit surfaces, we now consider

specific methods for their evaluation and definition.  As described in section 2.4,

the skeleton is a collection of elements, each of which generates a volume.  Within

an implicit context, we call such a volume a skeletal primitive, which we denote by

Pi(p), for skeletal element i.  Thus, P is a function from ℜ3 (or ℜ2 for illustrative

purposes) to ℜ, and, usually, is C1 continuous.  The implicit surface function may

be a blend of these primitives, i.e., f(p) = g(p, P1, P2, ... Pn) = 0, and the implicit

surface is the covering, or manifold, of the skeleton.  Ideally, we wish our

implementation of implicit surface algorithms to be indifferent to skeletal

complexity.  This leads to two principal methods to evaluate the implicit surface:
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(3.3) fskeleton  =  frroot−c, where frlimb  =  max (flimb, Σfrchildren) , or

(3.4) fskeleton  =  Σflimb−c

In both (3.3) and (3.4), flimb refers to the implicit primitive defining the volume

surrounding the particular skeletal element.  In (3.3), fr is a recursive function

equal to the implicit primitive of a limb or the sum of fr applied to each of the

child limbs, whichever is greater.  Contrary to solid modeling convention, we

assume flimb increases with decreasing distance to the limb; thus, max, rather than

min, is appropriate.  fskeleton(p) is the recursive function applied to the root limb of

the skeleton; in (3.4),  fskeleton(p)  is simply the summation of all primitives.  The

recursive function yields a more smooth transition in limb radii at branch points.

The computational load for (3.3) and (3.4) can be reduced by providing an axis-

aligned bounding box around each skeletal element.  For p outside the bounding

box of limbi, the influence of limbi is presumed non-existent; that is, flimbi
(p) = 0.

It is simple to test for p within an axis-aligned box.

The interpolation of two implicit surfaces can be accomplished in several ways.

The most accessible method is to interpolate the individual functions that define

the surfaces.  For example, in the figure below, we interpolate a torus,

(x2+y2+z2+rmajor
2−rminor

2)2−4rmajor
2(x2+z2), and a sphere, x2+y2+z2−rmajor

2.

Figure 3.1 Interpolation of Sphere and Torus Functions
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Interpolation of two functions, however, is not appropriate for skeletal forms

because rigid body transformations can be lost.  For example, in the following

illustration, generated with a two-dimensional implicit contour follower, we

employ three different interpolations.  As in Figure 2.5, only rigid body rotation of

the skeleton produces a realistic interpolation.

Figure 3.2 Implicit Interpolations

top: interpolation of implicit contour functions3

middle: interpolation of segment endpoints

bottom: interpolation of segment angle

3.4 Visualization

Because an implicit formulation does not produce surface points by substitution,

root-finding must be employed to visualize an implicit surface.4  This can be

performed by ray-tracing, polygon scan conversion, or contour tracing.  We briefly

consider each of these methods.

Implicit surfaces may be rendered directly by ray tracing, assuming a ray-surface
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intersection procedure is provided for a given surface.  Often the intersection

calculation can be accelerated by culling those pieces of the surface bounded by

axis-aligned boxes not intersected by the ray.  This process is known as spatial

subdivision [Glassner 1984], [Samet 1990] of the implicit volume, and was applied

to a procedural implicit surface [Bloomenthal 1989] to produce the image below.

Other methods to accelerate the ray-tracing of implicit surfaces include symbolic

algebra for surfaces defined by polynomials [Hanrahan 1983], the Lipschitz

condition for surfaces with bounded gradient derivatives [Kalra and Barr 1989],

and sphere-tracing for surfaces with bounded derivatives [Hart 1993].

Figure 3.3 Ray-Traced Image

In addition to shaded images, it is possible to create contour-line (or section-line)

drawings of implicit surfaces by intersecting the surface with a series of planes,

each perpendicular to the line of sight and receding from the viewpoint [Ricci

1973].  For each plane, the zero-set contour is drawn, excepting those parts

obscured by previously drawn contours.  In [Bloomenthal 1989] the implicit

surface was spatially partitioned by an octree [Meagher 1982] to produce the

following image.  It is simple to compute the intersection of octree and plane; each
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intersected terminal node of the octree produces a section of the contour.  Contour

line drawings are particularly useful for engineering applications [Forrest 1979].

Figure 3.4 Contour Line Drawing

Although ray-tracing can produce excellent images, it cannot produce a chartable

surface,5 that is, a concrete surface representation.  Such representations permit

non-imaging operations such as movement from one surface point to another,

positioning objects upon a surface, navigating along the surface to define texture,

and associating predefined texture with specific portions of the surface.

The most universal, concrete surface representation is, arguably, a set of polygons.

Conversion of a functionally specified implicit surface to a polygonal

approximation can require considerable computation, but is required only once

per surface and allows rendering of the surface by conventional polygon scan

conversion, which is considerably more efficient than ray-tracing an arbitrary

implicit surface.
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It is possible to convert a low order algebraic function to a parametric equivalent,

and then generate polygons by sweeping the surface parameters through their

domains.  This becomes difficult or impossible for higher order functions

[Sederberg 1986].  Instead, we employ numerical techniques to sample the implicit

surface function and polygonize the surface.  These techniques generally work well

for smooth implicit surfaces.  Conversion to polygons allows the computer

graphicist to manipulate the surface in traditional ways and to render the surface

without repeated solution of the implicit surface function.  Because of these

advantages, we devote the next section to polygonization.

3.5 Polygonization

A flexible design environment should free the designer from difficulties associated

with the computer representation of a surface, whether these difficulties be storage

in a concrete form, fitting together surface pieces, or visualization.  We rely on

polygonization to shield the designer from the productive process wherein the

abstract design expression (i.e., f) is converted to a concrete representation (i.e.,

polygons).  In other words, the polygonizer treats f as a ‘black box’ and in so doing

isolates the designer’s definition of skeleton, volumetric primitives, and their

blends from the topological and geometrical complexity of the resulting surface.

Thus, complex implicit surfaces do not require correspondingly complex

polygonization software, whereas the polygonization of parametric surfaces often

requires an ad hoc implementation for each surface type.  In this section we

present a brief description of implicit surface polygonization.

An evaluation of polygonizers according to their implementation complexity,

number of triangles produced, topological consistency, and topological correctness

is given in [Ning and Bloomenthal 1993].  Other criteria, such as the number of

function evaluations required, the adaptive distribution of polygons, and the visual

appearance of the resulting surface, are not evaluated.
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Polygonization consists of two principal steps: a) the partitioning of space into

cells, and b) the processing of each cell to produce polygons.  In the first step,

space is partitioned into non-overlapping, space-filling cells that collectively

contain the surface.  The implicit surface function is evaluated at the corner.6

negative values are considered to lie on one side of the surface, positive values on

the other.  In the second step, a vertex of the implicit surface is presumed to lie on

any cell edge that connects oppositely signed corners.  Within each cell the surface

vertices are connected to form one or more polygons.  Throughout this and the

following chapter, we use the term ‘‘corner’’ to mean a vertex of the polygonizing

cell and the term ‘‘vertex’’ to mean a vertex of the implicit surface.

3.5.1 Partitioning

An important distinction concerning polygonizers is the function f, which can be

discrete or continuous.  Many polygonizers are intended for use with discrete data,

such as obtained from scanning devices.  In other words, the value of f is available

only at cell corners.  For continuous functions, such as those that define the

geometric models described in this dissertation, the value of f may be obtained at

arbitrary locations.  There are two practical consequences of this distinction.  The

first relates to the accuracy of the polygonal surface.  For discrete functions, the

location of a surface vertex must be approximated; for continuous functions, the

location of a surface vertex can be determined with arbitrary precision.

A second practical consequence concerns the number of function evaluations.  In

the discrete case, f is evaluated throughout a fixed volume, and at a fixed interval.

In this process, known as enumeration, the number of function evaluations is fixed

and, usually, the time per evaluation is a constant determined by the scanning

hardware.  In the continuous case, the volume enclosing a surface is not known a

priori and each function evaluation usually requires considerably more

computation than in the discrete case.  Thus, obtaining all cells within a given

volume is less practical for the continuous than for the discrete case.  Instead,
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polygonizers based on continuous data usually begin with an initial cell enclosing a

piece of the surface.  Additional cells are propagated across cell faces that intersect

the surface until the implicit surface is fully contained by the collection of cells.

This process is known as numerical continuation [Allgower and Georg 1990] and

was first applied to implicit surfaces by [Wyvill et al. 1986].

Continuation methods require O(n2) function evaluations, where n is a measure of

the size of the object (thus, n2 corresponds to the object’s surface area).  Methods

that employ enumeration require O(n3) function evaluations.  We know of only

two published polygonization implementations.  In [Watt and Watt 1993] a

‘marching cubes’ implementation is provided that employs enumeration, and in

[Bloomenthal 1994] an implementation is provided that employs continuation,

which will be described in this section.7

A benefit of enumeration is that it detects all pieces of a set of disjoint surfaces.

This is not provided by continuation methods, which require a starting point for

each piece.  The continuation method used in our research automatically detects a

starting point by random search; thus, only a single object is detected and

polygonized.  The designer may, however, explicitly provide a starting point, in

which case random search is not needed and disjoint objects may be polygonized

by repeated use of the polygonizer, each time with a different starting point.  It

may be possible to automate the detection of starting points for skeletally defined

models by searching the neighborhood of each skeleton’s root.  In practice,

providing a starting point (or starting neighborhood) does not appear to be a

serious burden for the designer.

The cube is a useful partitioning cell because it is a regular polyhedron that fully

packs space [Coxeter 1963].  Its symmetries provide a) a simple means to compute

and index corner locations, which is useful in storing surface vertices, and b) a

simple means to index the cell itself, which is useful for the prevention of cycles

during cell propagation.
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3.5.2 Root-Finding

In skeletal design, an object is defined by a continuous, real-valued function.  Such

functions allow the location of a surface vertex to be accurately computed, rather

than approximated by linear interpolation as is commonly employed with discrete

data.  The affects of interpolation are shown below.

Figure 3.5 Surface Vertex Computation

left: accurate, right: interpolated

Binary subdivision is a reliable and simple method to compute accurate surface

vertex locations.  Given one point inside the surface and one outside, the method

converges to a point on the surface by repeatedly subdividing the segment

connecting oppositely signed function values.  Ten iterations appears to provide

acceptable accuracy.  Subdivision can, at times, be more efficient than other

convergence methods, such as regula falsi [Bloomenthal 1988].

As described in [Wyvill et al. 1986], the performance of function evaluation can be

greatly improved by culling those skeletal elements that do not contribute to the

function value at a given point (because the point is beyond the influence of the

element).  The skeletal primitives can be organized into a set of bounding boxes or

a hierarchical structure such as an octree.

Performance is also improved by minimizing the number of function evaluations.

For example, the location of a surface vertex is computed only once; it and its



47

function value are cached and subsequently indexed according to the coordinates

of its edge endpoints, using a hashing technique similar to that reported in [Wyvill

et al. 1986].  Function values at cube corners are similarly cached.  Cached cube

corner values accelerate the computation of surface vertex locations for adjacent

cubes; cached surface vertex values accelerate the computation of surface normals.

The overhead in caching function values may exceed the cost of additional

evaluations for simple functions.  For complex functions, however, the elimination

of redundant evaluation significantly improves performance.

3.5.3 Cell Polygonization

Cell polygonization is the approximation by one or more polygons of that part of

the surface contained within a cell.  This approximation consists of three steps.

The first is the computation of edge vertices that approximate the intersection of

the surface with the cell edges.  The second step is the connection of these vertices

to form lines across the faces of a cell; these approximate the intersection of the

surface with the cell faces.  The third step is the connection of these lines to form

polygons, which approximate the surface itself. 

Unfortunately, some polarity combinations of cube corners do not disambiguate

between conflicting polygonal configurations within a cube.  The ‘marching cubes’

polygonization method [Lorensen and Cline 1987] produces errant holes in the

surface because it treats these ambiguities inconsistently [Düurst 1988].  The

method employed by the skeletal design system treats cube ambiguities

consistently, in one of two user-selectable ways.  Either the cube is directly

polygonized according to an algorithm given in [Bloomenthal 1988], or it is

decomposed into tetrahedra that are then polygonized according to an algorithm

given in [Koide et al. 1986].  Thus, either a cube or a tetrahedron serves as the

polygonizing cell.  The continuation, decomposition, and polygonization steps are

illustrated below.
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continuation (side view)

surface

decomposition polygonization

Figure 3.6 Overview of a Polygonizer

Each edge of the polygonizing cell that connects corners of differing polarity yields

a surface vertex.  When connected together, the surface vertices form a polygon.

The ordering of these vertices is given by a table that contains one entry for each of

the possible configurations of the cell corner polarities.  For the cube, the table has

256 entries and may be generated according to methods described in [Bloomenthal

1988] and [Wyvill and Jevans 1993].  For the tetrahedron, which is the default

polygonizing cell, the table has 16 entries and may be generated by inspection.

For each tetrahedron, either no polygon, a triangle, or a quadrilateral (i.e., two

triangles) is produced, as shown below.

Figure 3.7 Tetrahedral Cell Polygonization

left: zero, three, or four edge vertices are produced within a tetrahedron

right: at most a single line crosses a tetrahedral face 

Because the tetrahedral edges include the diagonals of the cube faces, the

tetrahedral decomposition yields a greater number of surface vertices per surface

area than does cubical polygonization, as compared below.  Cubical

polygonization requires less computation than tetrahedral polygonization, but

requires a more complex implementation.
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Figure 3.8 Two Methods of Cell Polygonization

left: with tetrahedral decomposition, right: without

In [Wyvill et al. 1986] polygons are produced in a ‘polygon’ format, wherein

surface vertices shared across adjoining polygons are replicated.  If vertices are

stored by reference, not by value, a ‘points/polygons’ format results and coincident

vertices are not replicated.  Rather, the vertex reference (or ‘id’) can be associated

with its containing edge.  An edge that contains a surface vertex may be stored in a

hash table, indexed according to the lattice indices of its two endpoints.  This

sparse storage, whose memory requirements are proportional to the object’s

surface area (whereas dense storage is proportional to the object’s volume) is

desirable because the domain extent of the function is not known a priori.  Because

tetrahedral cells utilize the corners of the cubical cell, the cube corner lattice

indices work well for cubical or tetrahedral partitionings.

The points/polygons format provides a basis for conversion to a boundary

representation and may be more convenient for some polygon renderers  A

comparison of the two formats is given below.
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v1

v2

v3

v4

polygon format

triangle:

triangle:
(x2, y2, z2)
(x4, y4, z4)
(x3, y3, z3)

points/polygons format

(x1, y1, z1)
(x2, y2, z2)
(x3, y3, z3)
(x4, y4, z4)

(1, 2, 3)triangle:
triangle:

vertices:
(x1, y1, z1)
(x3, y3, z3)
(x4, y4, z4)

(1, 3, 4)

Figure 3.9 Two Polygon Formats

Either during or after polygonization, a surface vertex may be assigned a normal

and, optionally, a color or other property.  The normal at p is the function gradient,

approximated by a forward difference (less evaluations than a central difference):

(3.5) ∇f(p) ≈ (f(px)−f(p), f(py)−f(p), f(pz)−f(p))/∆,

where px, py, and pz represent p displaced by ∆ along the respective, positive axes.

3.5.4 Surface Bounds, Complexity, and Resolution

Many implicitly defined objects, such as the tori shown below, are two-

dimensional manifolds.  They may be bounded or unbounded, but, everywhere,

must be homomorphic to a two-dimensional disk.  The upper torus is given by

t1(x, y, z) = (x2+y2+z2+R2−r2)2−4R2(x2+y2) = 0, where R and r are the major

and minor radii (in this example, r = R/4).  To achieve a rotation and offset, the

lower torus is defined by t2(x, y, z) = (x2+(y+R)2+z2+R2−r2)2−4R2((y+R)2+z2)

= 0.  The points that satisfy f(p) = t1(p) = t2(p) = 0 define a ‘Voronoi’ surface

[Chandru et al. 1990]  This surface is not bounded and requires a limit to the

continuation propagation in all six (left, right, above, below, near, and far)

directions from the start point.  For the surface below, the propagation limit was 7.
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Figure 3.10 Torus R Us

left: two Tori, right: their Voronoi surface 

There is no limit to the complexity of the implicit surface function.  For example,

an object resembling a piece in the game of ‘jacks’ may be given by:8

    (1/(x2/9+4y2+4z2)4+1/(y2/9+4x2+4z2)4+1/(z2/9+4y2+4x2)4+

    1/((4x/3−4)2+16y2/9+16z2/9)4+1/((4x/3+4)2+16y2/9+16z2/9)4+

    1/((4y/3−4)2+16x2/9+16z2/9)4+1/((4y/3+4)2+16x2/9+16z2/9)4)−1/4−1.

Indeed, ‘meta-objects’ have been specified with thousands of terms [Graves 1993].

Although its complexity is unrestricted, the implicit surface should be G1

continuous.  Otherwise, the surface that results from fixed size partitioning may be

incomplete, have truncated edges, or contain small jutting pieces (such as shown in

[Bloomenthal 1994]).  A G1 discontinuous surface requires adaptive function

sampling to produce a concrete representation that is faithful, in terms of fine

detail, to the design.

For polygonization, adaptive sampling is the variation of cell size according to

several possible criteria, such as a) surface curvature within the cell [Bloomenthal

1988], b) interval analysis of the function at the cell corners [Snyder 1992], c)

bounds on the gradient [Kalra and Barr 1989], or d) bounds on the derivative [Hart
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1993].9  An example of adaptive sampling according to approximate curvature is

given in the following figure.  This approach may be applied to all functions, but is

not guaranteed to find all surface parts.  The other three approaches find all parts

but require precise analysis of the implicit surface function.  Such analysis is

possible for many functions [ibid.], but not for an arbitrary ‘black box.’  Indeed,

there is always the possibility of a ‘pathological’ function that can never be

polygonized in sufficient detail.  For example, the Steiner surface, f(x, y, z) =

x2y2+x2z2+y2z2+xyz, consists of an easily polygonized surface and the principal

axes, which cannot be polygonized.

Figure 3.11 Adaptively Sampled Trianguloid

Adaptively sized cells complicate the cell processing step.  For example, the

hashing scheme described in section 3.5.3 would require substantial modification.

In [Bloomenthal 1988] a balanced octree [Samet 1990], a three-dimensional

corollary of the ‘restricted quadtree’ [Von Herzen and Barr 1987], is employed to

maintain the polygonal structure without discontinuities along faces of differingly

sized cells.  The cube is a logical choice for adaptive sampling; it is the only regular

polyhedron that can be recursively subdivided.  [Moore 1992] discusses adaptive

subdivision based upon tetrahedra.

In general, we have found a fixed cell size polygonizer provides good performance

and works well for smooth, natural shapes.  Fixed resolution polygonizers are

simpler to implement, which explains their popularity over adaptive resolution
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methods.  We do not employ automatic techniques to determine an appropriate

cell size; this is set by the designer.  In practice this has not been a significant

burden.  For fixed-size partitioning, the choice of cell size is important: too small a

size produces an excessive number of polygons; too large a size obscures detail.

The following figure demonstrates improved approximations as the cell size is

reduced. 

Figure 3.12 A Sphere Partitioned with Differently Sized Cells

Adaptive sampling can locate all subparts of an object, but cannot locate all objects

within a scene.  Some of these problems can be mitigated by skeletal techniques.

For example, after each polygonization step, points along each skeletal primitive

could be tested for inclusion within previously polygonized volumes.

3.6 Details, Details

In defining a smooth shape, we blend simple geometric primitives.  Details are, as

usual, a completely different matter.  We wish to produce images with detail

normally observable with the unaided eye, and suggest a finely detailed structure

be represented as a compound shape in which minute detail refines a smooth,

underlying surface.

Displacement techniques [Cook 1984] can be incorporated into the implicit

definition, as shown below, to refine the surface geometry.  In this case, the cell
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partitioning size can be proportional to the feature size of the added detail.

 

added
detail

smooth
surface

skeleton

Figure 3.13 A Smooth Surface Refined by Detail

Surface refinement may be implemented as an implicit composition (or

deformation) from ℜ3 to ℜ3.  For example, consider the following two-dimensional

function, f(p) = a(b(c(p))).  The original function c is simply a vertical wash of gray

(shown here with sine waves in the display’s colormap).  The function b causes two

local, blended shifts downward, and the function c adds a vibration.  This addition

of detail upon an underlying, smooth form is similar to the addition of harmonics

to a underlying audio sine wave [Chamberlin 1980].10  Although this type of

hierarchical detail could be recursive, in this example the character of the detail

changes according to hierarchical depth.

Figure 3.14 An Implicit Contour with Displacement

left: c, middle: b(c), right: a(b(c)) 

Patterns of complexity found on an object’s surface often correspond to the

object’s skeleton.  For example, surface creases occur at points of frequent

stretching or compression and these points are predictable given skeletal

articulation.  Therefore, detail need not necessarily be given in the implicit
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representation.  Instead, it can be added to the polygonized model directly,

accessing the skeleton and ignoring the implicit definition.  For example, a ‘bump-

map’ can be associated with each surface polygon; the pattern of the bump-map

can be determined from the relationship of the polygon to the skeleton.

Aside from general methods to assign texture [Gagalowicz 1985], [Turk 1992], we

are aware only of ad hoc methods to assign texture coordinates given an implicit

definition.  Once such method is illustrated in figure 5.75.  Although effective at

moderate or long range, mappings (such as bump mapping or texture mapping)

are usually unconvincing for natural objects viewed at close range.  A convenient

parameterization (i.e., assignment of texture coordinates) free of singularities may

not, however, exist for a given surface and, thus, it may be difficult to establish a

realistic mapping.

It is important that details, such as veins on a hand, be located consistently on the

underlying surface so that they remain appropriately attached to the surface

should it undergo articulation or transformation.  For example, if a skeletal joint is

articulated in such a way as to suggest stretching of the surface, we expect the

density of detail to decrease.  Otherwise, the animated detail will not appear

realistic.  Rather than incorporate this detail into the implicit definition, it may be

simpler to modify the polygonal surface produced by the implicit surface

polygonizer.  Polygonization produces a chartable surface.  In other words, we are

able to navigate on the surface and distribute detail, such as hair or veins,

according to the relationship between surface position and skeleton.  It is not

immediately apparent how the distribution of detail can be accomplished within a

visualization system such as ray-tracing, which does not produce a chartable

surface from an implicit definition.

3.7 Interactivity

Although in this dissertation we emphasize the application of implicit modeling to
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particular natural forms, a number of general observations apply to the implicit

design environment and, in particular, interactive techniques.  A survey of

techniques applicable to interactive implicit surface design may be found in

[Bloomenthal and Wyvill 1990].  These techniques include:

· interactive manipulation of the skeleton

· ‘diagramming’ of geometric operations used by a procedural function

· interactive procedural specification ‘by example’

· interactive definition of primitive functions for a skeletal element

· acceleration of ray-tracing or polygonization by

· spatial partitioning,

· bounding boxes,

· frame coherence, or

· user specified vertex accuracy 

· adaptive subdivision

· for surfaces with readily estimated local curvature

· for local areas specified by the user

· piecewise linear approximation of curved skeletal elements

· alternate display methods

· planar or volumetric function display, adjustable iso-value

· physically based point ‘scattering’

· improved resolution during idle processor moments

Physically based sampling is a method whereby points on the surface are

determined by heuristics, such as the function gradient [Figueirido and Gomes

1994].  Recent physically based methods provide improved design interactivity and

rendering performance [Witkin and Heckbert 1994].

In our implementation, the polygonization process may be aborted at arbitrary

time should the designer decide, for example, to revise the defining function or to

modify polygonization parameters such as cell size.
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3.8 Conclusions

The skeletal design models developed in this dissertation presume that the implicit

surface functions are continuous, not discrete as with scanned volumetric data.11

If we employed a discrete function, represented by a voxel array of function

values, we might use an altogether different method to evaluate fskeleton.  Before

sampling three-space for the surface, we could first proceed along the skeleton,

dispersing values to accumulate within voxels.  ‘Accumulation modeling’ has been

used to impressive effect with z-buffers [Smith 1982], [Williams 1990] and voxel

arrays [Greene 1989], [Greene 1991].  Although three-dimensional ‘value dispersal’

could be computationally expensive, the iterative accumulation within an

enumerated volume appear to permit the simulation of developmental processes

and the complex shapes that result [Greene 1989], [Greene 1991].

Polygonization is a method whereby a polygonal approximation to the implicit

surface is created from the implicit surface function.  This allows the surface to be

rendered with conventional polygon renderers.  Although ray-tracing can produce

excellent images of implicit surfaces, we prefer the concrete representation

afforded by polygonization.  Unlike ray-tracing, the concrete representation is

view independent.  Thus, a given polygonal resolution may be excessive for some

images and insufficient for others.

3.9 Notes

1. The BRep may be derived from a points-polygon set.  Thus, we consider the

product of polygonization, discussed in section 3.5, as equivalent to a boundary

representation.

2. Nonetheless, many geometric shapes are best abstracted into Boolean set

theoretic operations.

3. The top row of figure 3.2 was computed with f(p) = c − (α d(p, S1)2 + (1−α)
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d(p, S2)2)½, where S1 and S2 are line segments and α ranged from 0 to 1.  In the

figure below, f(p) = c − α d(p, S1) + (1−α) d(p, S2).  The tangent discontinuities

of the contours result from C1  discontinuities in the function d when p passes

across S.  In effect, unsigned distance d is discontinuous at d = 0; this

discontinuity disappears for d2. 

Figure 3.15 Contour Discontinuities

4. Incremental scan-line techniques can be used for certain classes of implicit

surfaces [Blinn 1982, Sederberg 1989], but not for arbitrary implicit surfaces.  As

an alternative to surface rendering, the implicit volume may be visualized by

volume rendering [Drebin et al. 1988] or slice rendering [Bloomenthal and Wyvill

1990], [Nielson et al. 1991].

5. ‘Chartable’ is a term suggested by Alyn Rockwood.

6. It is characteristic of implicit surfaces that spatial partitioning facilitates

polygonization as well as accelerates ray-tracing and contour line-drawing.

7. This software is available through anonymous ftp from Princeton.edu,

/pub/Graphics/GraphicsGems/GemsIV/.

8. This function is courtesy of Mark Ganter.

9. These same criteria can be used to determine an acceptable size for fixed-size

polygonization.

10. And, just as ‘sampled data’ can be utilized in audio synthesizers, so can it be

applied as textural detail to an otherwise smooth surface [Bloomenthal 1985].
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11. Differences between discrete and continuous implicit surface functions are

examined in [Ning and Bloomenthal 1993].

Do not worry about your difficulties in mathematics;

I can assure you that mine are still greater.

(Albert Einstein)


